u-substitution is backwards chain rule

Motivating example			
	Example application of chain rule	Example application of <i>u</i> -substituion	
1.	$f(x) = \sin\left(\underbrace{x^2 + 4x + 3}_{\text{"pretend }x"}\right)$	$f(x) = \sin(x^2 + 4x + 3) + C$	
2.	$f(x) = \sin(u)$	$f(x) = \sin(u) + C$	
3.	$f'(x) = \cos(u) \cdot \underline{\hspace{1cm}}$	$f(x) = \int \cos(u) \mathrm{d}u$	
4.	$f'(x) = \cos\left(\underbrace{x^2 + 4x + 3}_{\text{"pretend }x"}\right) \cdot \left(\underbrace{2x + 4}_{\frac{du}{dx}}\right)$	$f(x) = \int \cos\left(\underbrace{x^2 + 4x + 3}_{\text{"pretend } x"}\right) \cdot \left(\underbrace{2x + 4}_{\frac{du}{dx}}\right) dx$	
5.		Let $u = x^2 + 4x + 3$ $\frac{du}{dx} = 2x + 4$	
6.		$f(x) = \int \cos(x^2 + 4x + 3) \cdot (2x + 4) dx$	

Steps

- 1. Identify a portion of the integrand that has a derivative that looks like some other stuff in the integrand. Let this expression be u.
 - a. If the choice of u is not obvious, try working through the following list:

Type of function	Have differentiation formula?	Have antiderivative formula?
L ogarithms	Yes	No
Inverse trigonometric functions	Yes	No
Power and polynomial functions	Yes	Yes
Exponential functions	Yes	Yes
Trigonometric functions	Yes	Yes

- b. If the earliest row in the above table that has a corresponding expression in the integrand describes more than one expression in the integrand, give higher priority to identifying as u expressions that are "inside" complicated operations (e.g. inside a power, inside a denominator, inside a cosine, etc.)
- 2. Compute du = u'(x) dx. If algebraic manipulation is unreliable, explicitly isolate $dx = \frac{du}{u'(x)}$.
- 3. If integral is definite, compute each bound in u (e.g. for x = a, write $u(a) = \cdots$).
- 4. Substitute u and du into the integral (replacing the bounds if the integral is definite).
- 5. Attempt to integrate the resulting integral.
- 6. If integration succeeds and integral is indefinite, replace u with its expression in terms of x.